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1 Abstract

This paper details the implementation of a simple recurrent neural network
model which learns to mimic the sonic characteristics of nonlinear audio pro-
cessing effects. We find that while “distortion” and “fuzz” effects can be effi-
ciently reproduced with extremely minimal resource requirements, other effects
such as phase modulation and delay require a more advanced model.

2 Introduction

Creating digital reproductions or “clones” of analog signal processing equip-
ment tends to be process which requires a high degree of specialized knowledge
and skill. Beyond analyzing circuits in order to translate their mathematical
structure to the digital domain, in order to produce a convincing replica it is
often necessary to model the electrical dynamics and idiosyncrasies of individ-
ual components. In recent years, machine learning has provided a compelling
alternative to this difficult and labor intensive process. By treating a piece of
analog equipment as an opaque function of its inputs and outputs, we can train
a neural network to find a mapping which reproduces its sonic characteristics
automatically.

3 Related Work

Much of this paper is a reproduction of the work done by Wright et al.[8][7]
in the area of guitar amplifier modeling. Mehri et al. provided a foundational
text for applying recurrent networks to sample-level audio generation with their
SampleRNN[4]. In the areas of audio generation and signal processing, recur-
rent models are frequently rivaled by models based on WaveNet-style dilated
temporal convolutions[5][1].
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4 Methodology

4.1 Data

Training data was obtained by processing audio clips using a variety of LV2
effects plugins. To assess the model’s ability to learn simple nonlinear effects,
we used the “MB Distortion” and “Muff”1 plugins from the free and open
source Guitarix[2] plugin collection. The “Phaser” plugin from Guitarix, and
the “Dumb Delay” plugin from the LV2 reference plugin suite were also used,
in order to investigate the model’s ability to learn effects with relatively long
time dependencies. In principle, the processing could also be done using ana-
log hardware (and indeed this would be a much more useful application of our
model) but digital signal processing was chosen in order to simplify the collec-
tion of training data. Unprocessed “source” audio clips were taken from the
NSynth[3] dataset, which consists of an annotated collection of 305,979 musical
notes, played on a variety of acoustic and electronic instruments.

4.2 Methods

Our model consists of a single LSTM layer followed by a fully connected layer
with linear activation. At each time step, the fully connected layer maps the
hidden state of the LSTM to a single output sample. This is then summed with
the input signal. We used the same loss function as Wright et al.[8]

ε = εESR + εDC.

The first component of this loss function is the error-signal ratio, given by

εESR =

∑n
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i

where n is the batch size, and ti and yi are the target and predicted output
samples, respectively, at index i. Contrary to mean square error, this loss
function compensates for the energy of a given signal, so that training is not
dominated by high-energy examples. The ESR loss is summed with a second
component, which represents the “DC bias” between the prediction and target
samples
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5 Experiments

We randomly selected 10,000 audio clips from the NSynth dataset, and split
them into training and validation sets (90% and 10%, respectively). The net-
work was trained for 50 epochs, and the LSTM layer had 16 hidden channels

1Based on the Electro-Harmonix Big Muff Pi, a popular guitar fuzz pedal.
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and a depth of 1. Some preliminary experiments were made with slightly larger
networks (2 layers with 32 hidden channels) but this did not result in an appre-
ciable improvement in accuracy. All training was conducted on a single Nvidia
RTX 2070 graphics card, with 8GB of VRAM.

5.1 Learning nonlinear distortion effects

Our best results were obtained from training on audio samples processed using
“distortion” effects. The final validation loss was ε = 0.1250, which corresponds
to a mean square error loss of 0.0003. Figures 1 and 2 show sections of audio
taken from a model trained on the “Muff” fuzz pedal plugin for 50 epochs. The
network consistently fails to accurately reproduce the transient, but converges
to the target sequence after a few thousand samples.

Figure 1: Comparison between target audio (blue) and predicted audio
generated by a network which was trained to model a distortion effect
(red), taken from the middle of a typical 64000 sample clip.

5.2 Learning modulation and other time-based effects

The model was much less successful at learning effects with relatively long time
dependencies. We attempted to train the network to model a 10 Hz “phaser”
effect (see Figure 3), and a simple 20 ms delay effect with feedback (see Figure
4). While the model did manage to reproduce some of the finer characteristics of
the target “phaser” audio, it has apparently not learned to reproduce the phase
modulation itself. In the case of the delay, the model failed to learn anything
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Figure 2: Comparison between target audio (blue) and predicted audio
generated by a network which was trained to model a distortion effect
(red). The network is unsuccessful in modeling the transient.

useful from the training data. Final validation losses for the phaser and delay
models were 0.522 and 1.055, respectively.

6 Discussion

The clear weakness of this architecture is its inability to learn the “slow” tempo-
ral relationships, that characterize modulation and delay effects. One possible
solution would be to use a “tiered” architecture[4] with each tier operating
at a different temporal resolution. Another interesting option would be make
use of an intermediate representation in an encoder-decoder architecture. The
WaveNet autoencoder developed by Engel et al.[3] takes this approach, and is
able to model low frequency features in the training data despite its relatively
simple structure. Finally, there has recently been much promising work re-
lated to attention mechanisms, and their ability to disentangle the complicated
structure of spoken language[6]. A similar approach may be productive here.
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Figure 4: Comparison between target audio (blue), source audio (green),
and predicted audio generated by a network which was trained to model a
delay effect (red). The target and source appear similar because the delay
effect is not visible on this time scale.
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